The Exhibition

Students visiting Telfair Museums Leo Villareal exhibition will be introduced to the awe-inspiring work of the most prominent light sculptor of this generation and a pioneer in the use of light-emitting diodes (LEDs) and computer-driven imagery. The magic of Villareal's work lies in its sequencing. Thousands of tiny white LEDs may resemble a shimmering starry night, while tubes of colored LEDs masked by a diffuser suggest drifting soft-focus Impressionist landscapes.

Algorithms, the system of rules written into the computer code that governs the behavior of individual LEDs, are what make Villareal's work come to life. As Villareal explains, “The essence of the piece is the code; colored light is the manifestation.” The spectator engages primarily with those colored lights, which means the “essence” Villareal refers to remains off-screen somewhere. As viewers watch pixels move and shift in color, they instinctively try to detect the underlying patterns and predict their movement. The hidden rules are surprisingly difficult to decipher, because what happens on the surface level is an example of emergence: increasing levels of complexity arising out of simple rules. The resulting patterns appear to pulse and swarm, conjuring biological, lifelike behavior from straightforward mathematical algorithms.

Leo Villareal traces the development of the artist’s work over the past decade, from his earliest experiments with light and sequencing using a limited number of strobe lights activated by the artist’s custom software programming, to his most recent works that feature thousands of tiny pinpoint LEDs firing in hypnotic and transportive patterns. Villareal’s work reflects our contemporary experience—complex, quickly changing and fundamentally informed by and integrated with technology.

Leo Villareal was organized by the San Jose Museum of Art. Sponsored by the Andy Warhol Foundation for the Visual Arts, the Walter and Karla Goldschmidt Foundation, and Bank of America.
The Artist

Leo Villareal was born in Albuquerque, New Mexico in 1967 and raised in El Paso, Texas and northern Mexico. He studied stage design and art as an undergraduate at Yale University. In the early 1990s, he entered the graduate program in Interactive Telecommunications at New York University’s Tisch School of the Arts. Between completing his undergraduate and graduate degrees, Villareal interned at the Peggy Guggenheim Collection in Venice, Italy, where he was widely exposed to contemporary art, including such artists working with light as Dan Flavin and James Turrell, who were important influences on his later work. In 1994 he earned an additional graduate degree in Professional Studies, also from NYU. Following the completion of his graduate schooling, Villareal interned and later worked for the Palo Alto, California-based technology think tank Interval Research Corporation. This was also the first year that Villareal attended the Burning Man festival, in which he has participated every year since.

The Burning Man Festival is an annual week-long gathering held on an empty lakebed in Nevada’s Black Rock Desert. It is an experimental community dedicated to art, self-expression, and self-reliance. One evening, in the midst of this temporary city, Villareal lost his bearings. “I had a child-like feeling of panic and found it extremely interesting that that could happen to me at age twenty-seven.” In the absence of trees or landmarks, he was compelled to relearn how to navigate in this new place with completely different rules. Something about his experience recalled to him the look of virtual reality, of computer graphics and early video games, which were characterized by rudimentary, flat, featureless landscapes and sky.

For 1997’s Burning Man Festival, Villareal constructed a wooden grid framework to which he attached sixteen strobe lights programmed with a microcontroller to turn on or off in sequence. Villareal mounted the structure atop his camper. Visible from miles away, it functioned as a way-finding device, and yet was much more. It projected sequences that “expressed a desperate need to communicate in a language that begged to be decoded.” Along with many other people, Villareal was taken by the effect of the apparatus, finding it compelling and hypnotic. Later that fall, he encased those same lights in a translucent acrylic box to form Strobe Matrix, his first formal attempt at light sculpture.

The Technology

The LEDs Villareal uses, dancing in patterns too swift for the eye to differentiate, are driven by microcontrollers (small, simple computers on a chip) or on Mac mini-computers running custom software. Collaborating closely with engineers, Villareal constructs the exacting codes that propel his kinetic light sculptures.

One of Villareal’s inspirations is the Game of Life, a cellular automaton devised in 1970 by mathematician John Conway. The Game of Life demonstrates how simple components can result in higher-level systems. Ant colonies, traffic patterns, and nomadic communities such as Burning Man are all examples of “emergence”—the term for how complex systems arise from simple interactions. The
game has attracted the interest of computer scientists, physicists, biologists, economists, mathematicians, philosophers, and artists—such as Leo Villareal—who find its parallels in the realm of living organisms.

Conway’s *Game of Life* simulates the life and death of cells, based on their proximity to other live cells. Using a grid, you create an initial pattern of tiles, or “cells,” then apply the following rules that Conway developed:

- Every cell interacts with its eight neighbors, which are the cells above, below, and diagonally adjacent to it.
- Any live cell with fewer than two live neighbors dies.
- Any live cell with more than three live neighbors dies.
- Any live cell with exactly two or three live neighbors lives.
- Any dead cell with exactly three live neighbors becomes a live cell.

When the rules are applied to the initial pattern, or “generation,” they result in a second generation, to which the rules are applied again. As subsequent generations evolve through the “birth” and “death” of cells, they “move” across the surface of the grid.

As Leo Villareal explains, “Inspired by mathematician John Conway’s work with cellular automata and the *Game of Life*, I seek to create my own sets of rules. Central to my work is the element of chance. The goal is to create a rich environment in which emergent behavior can occur without a preconceived outcome. I am an active participant, serving as editor in the process through careful selection of compelling sequences. These selections are then further refined through combination with other sequences through simple operations such as addition, subtraction and multiplication. The sequence’s opacity, speed, and scale can all be manipulated through custom software. Ultimately, complex compositions are formed and then displayed in random order and for a random amount of time in the final artwork.”

Visitors to the exhibition *Leo Villareal* may interact with an LED version of the *Game of Life*, developed by San Jose Museum of Art and Evil Mad Scientist Laboratories. To create a live cell, users turn the light on; to create a dead cell, they turn the light off. Pressing “next step” allows users to see one generation. Press “run” and the patterns continue to evolve.

The following link walks viewers step-by-step, with still photos and a video, through the process of creating the *Game of Life* interactive that accompanies the exhibition:

http://www.evilmadscientist.com/article.php/gameoflife
When a museum hosts an exhibition, often the art work must travel from another location. The art must be specially crated and handled very carefully while traveling, then uncrated and placed in the museum with the same care. For Villareal’s work, installing his pieces in the Telfair Museums is a much more involved process than is typically the case when hanging, for example, a painting. Diamond Sea, for instance, is comprised of 6 large LED and stainless steel panels which are bolted together. The panels, which each weigh 350 pounds, are also bolted to the wall and floor. Custom electronics and a computer power the piece.

Leo Villareal
Diamond Sea, 2007
LEDs, circuitry, mirror finished stainless steel, transformers
120 x 180 x 6 inches, Unique
Courtesy Gering & López Gallery
120” x 180” x 27”
13.64 Amps / 1500 Watts

Uncrating a panel.
Bolting panels together.
Bolting panels to the wall.

Side view of *Diamond Sea.*

Each of the 6 panels has an Ethernet cable which is plugged into a switch. The cables and switch allow the separate panels to coordinate their actions.

A Mac mini computer contains the code that directs each of the 2,400 LED lights when to turn on and off.
Algorithmic Thinking

To prepare to understand the nature of computer science and its place in the modern world, the Computer Science Teachers Association (CSTA) recommends that K-8 students learn to incorporate the idea of algorithmic thinking into their daily problem-solving vocabulary.

Except in the context of mathematics education, this particular topic area is not a conventional part of the K-8 curriculum. That is, the concept of algorithm is used only to teach students the steps of arithmetic and other mathematical ideas. These algorithms generally involve repeating a series of steps over and over, as in the borrowing and carrying algorithms and in the long multiplication and division algorithms. However, the notion of algorithm includes a rich array of real-life situations.

In its simplest form, an algorithm is a method for achieving an outcome in a step-by-step manner. Students learn about algorithms whenever they discover a collection of steps used to accomplish a task. These steps should follow a sequence and accommodate variables (using conditional, or "if" statements) and repetitions (using loops or "while" statements). Here are a few examples appropriate for the K-8 level: recipes, board game rules, shampoo instructions, online map directions, and cpr guidelines. Students can create their own algorithms for activities like reading a book, preparing a sandwich, or sorting markers into non-working and working groups, then subdividing the working markers by color.

Educators may wish to investigate traditional math algorithms vs. alternative methods at the Everyday Mathematics Resource and Information Center http://everydaymath.uchicago.edu/parents/understanding-em/alternative-algorithms/. Here you will find a variety of alternative algorithms for addition, subtraction, multiplication and division. Current research indicates that students learn more about numbers, operations, and place value when they explore math using different methods. The site includes procedures that have come from children’s mental arithmetic efforts, as well as different countries. Each is a legitimate algorithm, that is, a set of rules that if properly followed yields a correct result.

Systems and Complexity Theory

[American Association for the Advancement of Science](http://www.aaas.org) and their [Benchmarks for Science Literacy](http://www.aaas.org) states in *The Nature of Mathematics, Patterns and Relationships* that

— mathematics enable people to make sense of a universe that otherwise might seem to be hopelessly complicated...it is important for students (1) to understand in what sense mathematics is the study of patterns and relationships, (2) to become familiar with some of those patterns and relationships, and (3) to learn to use them in daily life. ...in pursuit of the goal of understanding the nature of mathematics, students should have an opportunity in mathematics to reflect on the nature of patterns and relationships in a purely abstract way.

Integrating Multi-Disciplinary Information and Skills

Georgia Performance Standards: Fine Arts-Visual Arts Education, Domain C: Students make connections to other disciplines and to the world around them through the visual arts (National Standard 6). Students make connections from the world of art to other areas of learning and personal endeavor. Students derive inspiration for art from a variety of content areas. They inform their study and production of art by integrating information and skills from other disciplines and areas of knowledge such as math, reading, English Language Arts, social studies, science, world languages, music, dance, theater, physical education, career awareness, and technology into his or her artwork.
Much of the information in this guide is adapted from the **exhibition catalogue**. **Leo Villareal**, authored by San Jose Museum of Art Chief Curator JoAnne Northrup, with contributions by Sara Douglas Hart, Steven B. Johnson, Susan Krane, Michael Rush, and Mark Van Proyen. Hardcover, 192 pages, 528 color illustrations, Publisher: Hatje Cantz, ISBN 978-3-7757-2656-6

ARTnews interview with Villareal, conducted the summer after **Multiverse** was installed in the National Gallery and prior to the opening of **Leo Villareal** in San Jose.

http://news.cnet.com/8301-13772_3-20017310-52.html
C-Net NEWS interview with Leo Villareal and San Jose Museum of Art curator JoAnne Northrup. Includes embedded videos of Villareal’s work in motion, and a **slide show**

http://www.architecturaldigest.com/resources/features/2011/05/bedazzled_article
A brief interview by Architectural Digest, plus a link to 15 slides.

http://www.pbs.org/wgbh/nova/nature/emergence.html
A 12-minute film from Nova demonstrating how the coordinated movement of a school of fish or a flock of birds is not controlled by any leader. It emerges naturally as each individual follows a few simple rules, such as "go in the same direction as the other guy," "don't get too close," and "flee any predators." This phenomenon, known as emergence, may someday help experts explain the origins of consciousness and even life itself.
A clear, comprehensive exploration of the **Game of Life**, including **applets** (pop-out interactive features) that demonstrate the patterns and "objects" that emerge from the **Game of Life**. See also [SimpleLife](http://itunes.apple.com/us/app/simplelife/id392543601?mt=8) for an iPad/iPod compatible app that allows users to generate their own patterns.

From the **National Gallery of Art**, an **educational guide** on the subject of the light sculptor Dan Flavin, who was a major influence on Villareal. Contains a "light poetry" activity compatible with the **Leo Villareal** exhibition.

www.nga.gov/kids/scoop-flavin.pdf

An **online activity** from the **National Gallery of Art** allows users to transform 4 different portraits to pixels or work from a blank canvas: choose among brushwork effects, pixel sizes, colors, and transparency. An intuitive, engaging interface.

www.nga.gov/kids/zone/pixelface.htm

A collection of **learning activities**, adaptable for all ages, that teaches computer science without the computer. Games and puzzles introduce underlying concepts such as binary numbers and algorithms, isolated from the distractions and technical details that can arise on a computer.

csunplugged.org/image-representation

www.wikihow.com/Make-LED-Throwies

WikiHow's 5-step procedure for making throwies, tiny glowing led lights combined with a magnets that can be assembled into patterns or simply "thrown" to latch onto any metal object.

Villareal Preview Tour for Educators
Thursday, February 2, 2012
5 pm, Jepson Center

Please join our Telfair education staff, together with your colleagues from across the city, for light refreshments in the Jepson Center’s Luck Boardroom at 5 pm, followed by an exclusive preview tour of the Villareal exhibition at 6 pm. Admission to the Jepson Center is free to Educators on this evening; just call 912.790.8821 to r.s.v.p.

Educator Resources
Visit http://telfair.org/learn/resources/ for downloadable support materials and call 912.790.8821 for additional resources available for loan, assistance in developing tours to fit your curriculum, or to join our mailing list.

Leo Villareal is presented in conjunction with Telfair Museums 2012 Pulse Art and Technology Festival

February 27–March 4
PULSE, Telfair Museums’ Art and Technology Festival, returns in 2012 with exciting exhibitions, performances, lectures, workshops, and events celebrating technology and creative innovation. PULSE includes exhibitions and related programs by artists working within the medium of videogames, musical performances, and a “Green Machine” Art Bike Ride, coordinated with the Savannah Bicycle Campaign. Telfair’s education department will present pre-PULSE youth and adult workshops the weekend before the festival.
February 18-19 *Pre-PULSE workshop:* Developing games for the iOS (ages 18 and up)
Instructor: Andrew Hieronymi

February 18 & 26 *Pre-PULSE workshops:* Digital Fabrication, introduction for high school students. Instructor: Andrew F. Scott

February 27-March 4 **FREE WEEK at the Jepson Center**

February 27 / 6 pm Lecture by Leo Villareal followed by Opening Reception for *PULSE*

February 28 / 7 pm Pamela Z solo performance

February 29 / 11 am *PULSE* artist panel for high school students

February 29 / 6 pm Perfect Nowhere, interactive performance by Andre Ruschkowski

March 1 / 6 pm *Game Change* panel featuring Ian Bogost, Mary Flanagan, Kunal Gupta, and Greg Borenstein

March 2 / 6 pm Performance by the Loud Objects

March 2 / 7 pm Performance by the Medeology Collective

March 3 / 10 am Noise Toy workshop with the Loud Objects (ages 13-18)

March 3 / 10 am-1 pm Kinect workshop (ages 16+)

March 3 / 1-4 pm DIY Family Day and Expo

March 3 / 6 pm Performance by the Karmetik Machine Orchestra

March 4 / 1-3 pm Art Bike workshop 2 (all ages)

March 4 / 3 pm Green Machine Art Bike Ride

PULSE is presented FREE of charge thanks to project funding from the City of Savannah. Additional support was provided by iTech for Business.

Teachers, please note: During the PULSE March 3rd Family Day, Georgia Tech Savannah will present 30 minute workshops introducing children to Scratch. Scratch is a free programming language developed by MIT that makes it easy to create interactive stories, animations, games, music, and art -- and share your creations on the web. As young people create and share Scratch projects, they learn important mathematical and computational ideas, while also learning to think creatively, reason systematically, and work collaboratively. Our PULSE Family Day Scratch workshops are available on a first-come basis, and are scheduled at half hour intervals between 1 and 4 pm. For more information about Scratch, visit http://info.scratch.mit.edu/Educators

Visit telfair.org for a complete schedule and more information. Events, lectures, and performances are free; workshops require pre-registration and a fee. Reduced rates for workshops are available for Telfair members. (Educator memberships start at $35.) Call 912.790.8823 to register or inquire about our classes.
■ Fresh Focus: 21st Century Photography from the Permanent Collection
JEPSON CENTER December 16, 2011-July 8, 2012

Telfair Museums has greatly expanded its holdings in photography, adding nearly 300 photographs to its permanent collection since 2000. Fresh Focus includes approximately twenty-eight works demonstrating the breadth and variety of the Telfair’s holdings of twenty-first-century photography, including work by Jack Leigh, Jerry Siegel, Julie Moos (work pictured at left), Sally Mann, and others. Grades 4-12, Curriculum connections: VA/LA

■ Slavery by Another Name: Paintings and Assemblages by Robert Claiborne Morris
TELFAIR ACADEMY, January 6-March 4, 2012

Morris began to re-examine his understanding of race in America after reading Douglas A. Blackmon’s Pulitzer Prize winning book, *Slavery by Another Name*. The revelation that slavery continued in many forms until World War II changed the way he saw his native South. Morris began an odyssey in search of the images, objects, and artifacts related to this obscure chapter in American history, incorporating these materials into his mixed media works. Grades 8-12, Curriculum connections: VA/SS

■ A Native Son: Paintings by West Fraser
TELFAIR ACADEMY February 24-May 5, 2012

West Fraser’s long and respected career has earned him a well-deserved place among the top contemporary practitioners of plein-air painting in the region. The exhibition includes serene and luminous Low Country landscapes, together with astute and charming studies of everyday street scenes in Savannah, Charleston, and Europe. Grades 2-12, Curriculum connections: VA/SS

■ Game Change: Videogames as Medium and Inspiration
JEPSON CENTER February 27-April 1, 2012

Discover the ways in which contemporary artists have modified existing videogames or game technology, designed games themselves, created movies and narrative works within game worlds, or employed the visual vocabulary of videogames in other media. Works include a series of game poems for vintage Atari systems by Ian Bogost (work pictured at left) independent games by artists such as Kunal Gupta (co-founder of New York arcade Babycastles); and artists exploring recent game technology. Grades 4-12, Curriculum connections: LA/M/VA

■ Juliette Gordon Low and her Contemporaries in Savannah’s Art Scene
TELFAIR ACADEMY March 10-August 12, 2012

On the 100th anniversary of the creation of Girl Scouts, Telfair Museums takes a look at Girl Scout founder Juliette Gordon Low’s interest in art, both as an artist and as an art organizer. In addition to creating her own art, Low took a leading role in the Savannah art scene as a founding member of the Savannah Art Club, established in 1920. All Grade Levels, VA/SS
on-going tours and activities

- **Art Start: Color, Texture, & Shape** (Grades K-3)
The Telfair’s first youth program introduces 4–7 year-olds to color, texture, and shape through texture grab bags, color gels, and multisensory activities related to selected artworks in the museum’s collection and changing exhibitions. Take advantage of this tour at the Telfair Academy, the Jepson Center, or both!

 Curriculum connections: LA/MA/VA

- **Girl Scouts: Women in Art** (Junior)
Exploring Architecture (Cadet, Senior)
This docent-led tour examines women as the subjects of art and as artists themselves. With an optional printmaking studio activity, the Women in Art Tour also provides Scouts with the opportunity to work toward their visual arts badge. Older scouts will enjoy Telfair’s new architecture program. Students design their own museum space while learning about the Telfair’s architectural history, styles, and architects from different eras. Following the tour, students may create architectural plans and drawings for a personalized museum gallery. Cadet and Senior Girl Scouts complete work towards an interest project in Architecture and Environmental Design.

 Curriculum connections: LA/VA

- **Thinking Through Art** (Grades 4-12)
Telfair Museums offers tours of the permanent collection and selected exhibitions, using Visual Thinking Strategies (VTS) to build observational and language skills. By taking part in facilitated discussions, students practice collaborative problem-solving strategies applicable to the classroom and beyond. For selected grades, this program is offered with a writing activity that supports Language Arts standards.

 Curriculum connections: LA/VA

- **Toddler Third Thursday** 3rd Thursday of each month, 10-11:30am (3-5yrs)
Designed especially for preschoolers and their adult companions, this program allows toddlers to explore artwork on view in the Telfair galleries, and then visit the studio to complete an engaging art project related to their tour. A different tour and project is offered each month. Finish your visit with some time to play in the museum’s interactive space for kids, the ArtZeum. Sponsored in part by JCB, Inc.

- **wcwm?** Thursday, Friday and Saturday, 10 am-2pm (All Ages)
Drop in on us at the Jepson Center’s Melaver Studio and accept our wcwm? (what can we make?) challenge. Exercise your creative side through activities featuring assortments of recycled materials and art supplies. New to the wcwm? program is the Family Make, in which participants are assigned a theme each month and a secret ingredient or tool to make art from the most unexpected materials. Open to adults and children accompanied by an adult caregiver. Always free to members and to visitors with paid admission.

Don’t see what you are looking for? Telfair Museums staff will work with you to create tours that meet your needs and learning objectives.
Scheduling
Telfair Museums offers docent-guided tours for grades Pre-K through 12th. Public schools, private schools, home schools, and youth groups all enjoy the same opportunities. Because Telfair Docents are volunteers, and because some exhibitions are very popular, we advise you to schedule your tour as early as possible. At a minimum, **tours must be booked three weeks in advance**.

- To book a tour for the Jepson Center or Telfair Academy, call 912.790.8827.
- To book a tour at the Owens Thomas House call 912.790.8880.

Please note: **If booking for the Jepson Center/Telfair Academy and the Owens Thomas House, you must arrange for tours separately at each of the numbers above.**

Be prepared to provide the following information when scheduling your tour:
- Choice of tour program
- Preferred date and time of tour, plus an alternate date and time
- Name of your school, phone number, and email.
- Grade level and number of students (Minimum group size is 10 students. Larger groups may be accommodated by multiple appointments. Call for more information.)
- Number of accompanying adults: **Groups must include one adult chaperone per ten students**
- Media release information: We often document tours by photographing our tours in progress. These photos may be reproduced on the Telfair website, or used in promotional materials. We need to know if your students have parent/guardian-signed photo release permissions on file.

Fees
Admission is $5 per student. Cost of optional studio projects may vary. For every ten students, one teacher/chaperone is eligible for free admission. Additional adults will be charged the group rate of $15 (for docent-led tours) or $12 (self-guided). Payment is due on the day of your visit, unless other arrangements are made.

Cancellations
Prompt notification of cancellations is essential. Our docents are volunteers who arrive specifically for your tour. Call 912.790.8827 (If calling after hours, please leave a message).

If you are cancelling the day of the tour, call the museum receptionist at 912.790.8802 for the Jepson Center for the Arts, 912.790.8873 for the Telfair Academy, or 912.790.8880 for the Owens-Thomas House.

Directions
The Telfair Academy (121 Barnard Street) and Jepson Center (207 West York) are on the west and south sides of Telfair Square in downtown Savannah. The Owens-Thomas House is located within walking distance of these two buildings, on the east side of Oglethorpe Square (124 Abercorn Street). For detailed directions, museum hours, and parking information, please visit www.telfair.org
What is a docent?

Telfair Museums docents are Savannah community members who serve on a volunteer basis and provide tours of the museum's collections and special exhibitions to visiting groups of all ages, ranging from toddlers to adults. Our docents are a diverse and talented group of individuals who take part in an intensive training course and ongoing training. Some docents some specialize in particular tours, but they all have in common a love for art, and an enthusiastic desire to provide you with a great experience at the Telfair Museums!

Museum Manners

- **Explore with your eyes, not your hands.** Telfair Museums was created in order to share art and knowledge. We take special care of the art in our collections so that it can be shared for a long, long, time. Even gentle, small touches add up to harmful results, so our guards and staff work together to protect the paintings, drawing, photographs, sculpture, furniture, glasswork, silver, and all the objects in the collection. You can help by reminding others not to touch.

- **Point out details with words, not your finger.** Even if you know not to touch, pointing too closely to a part of a painting or sculpture can result in accidental touches. Instead of pointing, describe what you would like to point out using words like "in the center," "at the bottom," "next to the corner," "close to the edge," "to the right," "above," and "below."

- **Walk and move carefully. Follow your docent.** Take your time, watch where you are going, and hold onto handrails while using the stairs.

- **Listen carefully, raise your hand, speak clearly but quietly.** The museum is a place for thinking and learning. The same rules that make learning easier in a classroom are used here too.

- **Photography is not allowed in the galleries.** Bright camera flashes can fade artwork over time. Also, artists and owners of artworks retain rights to the images of that artwork; photographic copies are not permitted.

- **Eating, drinking, and chewing gum are not allowed.**

educator memberships

As an educator, you are eligible for a special membership rate.

Our $35 Educator’s Membership entitles you to all of the following:

- Unlimited free admission to the Telfair Museums three sites: the Telfair Academy, Jepson Center for the Arts, and Owens Thomas House
- Invitations to special members-only events and lectures
- Discounted art classes
- 10% discount at the Telfair Museums’ stores
- Access to the Curtis and Elizabeth Anderson Art Library
- Eligibility to join museum member groups
- A one-time use guest pass

It pays to join! Visit www.telfair.org or call 912.790.8866